Testing & Tuning the PID

for tuning i followed more or less the tutorial PID Without a PhD
from Tim Wescott

and the tutorial and video from PID Explained Team.

first i just checked with low temperatures of 20..40°C
as i went on and tested up to 260°C i noticed that the current did decrease. and the temperature did not increase any more.
i could see this in my graph as the heating got slower and slower with the rising temperature… (also the pid already saturated at the output..)

so i measured the resistance during the cool down of the heating elements to get some insights:
(4x in series → 48V/4=~12V/Module)

Temperature (°C)Resistance (Ohm)Current (A)Power @48V (W)
255401,1957
250391,2158
240381,2359
230361,2660,5
220381,2660,3
200341,3564,8
100261,888,6
8024296
60222,18104
4020,92,3110
2519,52,46118
Temperature / Resistance – 4 Modules in Series – 12V/Module

result: the ~57W is not enough to get to more than 255°C…

i rearranged the Modules into 3-in-series connection.
this means ~16V/Module – and tested again:

Temperature (°C)Resistance (Ohm)Current (A)Power @48V (W)
25527,51,4570
25027,01,572
24026,61,677
23025,61,6780
22025,31,782
20024,11,886
10018,82,1100
8017,52,7130
6016,7
4015,6
2514,3
Temperature / Resistance 3 Modules in Series – 16V/Module

with this i found that i can go above 255°C.

i then tested the profile for the Felder ISO-Cream “Clear” and found that in the reflow stage the heat-up is a little to slow:

config:3S profile:Felder ISO-Cream “Clear”
my setup

in the *my setup* picture is a temporary cardboard thing with a 80mm 12V fan (connected to 5V) to cool down faster between tests.
for the final setup i think i will buy 1 or two 5V and PWM capable fans….
and also exchange the *chamotte* ston with some metal frame.
this way i also can cool the bottom side..


so i again switch the configuration –
now i have a 2-in-series config: 24V/Module
CURRENTLY THIS TABLE IS ONLY CALCULATED VALUES!!

Temperature (°C)Resistance (Ohm)Current (A)Power @48V (W)
255202,4115
25019,52,46118
240192,52121
230182,67128
22017,52,74132
200172,82135
100133,69177
80124192
60114,36209
4010,454,59220
259,754,92236
CURRENTLY ONLY CALCULATED VALUES!!!!
Temperature / Resistance – 2 Modules in Series – 24V/Module

i also tested this with the Felder profile:

this time the heat-up is fast enough! 🙂
the nice and working pid tuning i had for the 4-in-series arrangement is now out of tune…
so i will have to re-tune it to get less overshoot / swing.

while having a break i thought about the maximal power in this configuration –
and found that this way i only be able to power 2×2 modules with my 250W power supply.
for now i leave it this way. in the long run i hope with the other frame concept i get more heat to the pcb and less into the stone and this way be able to use the 3S config.

Tuning

after a day of mostly waiting til the system cooled down again
– one test cycle <=60°C needs 400s → 6:40min –
i just rebuild my hw mounting setup.

this way i can warm up quicker and cool down much quicker as i do not store heat in the stone. – at least that is what i hope..

plot old setup
plot with old setup
plot new setup
plot with new setup

hmmm – does not seem to change much..

i then tested the actual Felder Profile:

Felder ISO-Cream ‘Clear’ – Sn96,5Ag3,0Cu0,5 – 2S1P – P 04.50 I 00.00 D 00.00

seems i have a working profile.
i will add a little more time for the prepare phase. so the pcb is really fully at the 50°C. at the top i have a little bit of a mis-match –
i saw on my temp sensor directly connected to the heating elements at the top ~265°C – so that is hot…
the pcb seems to increase its temperature resistance at higher temperatures… at the peak i have 230°C to 245°C error. and to the heating this results in ~35°C difference…

i will report when i solder the first real board. 😉